研究人员揭示氢化钡固氮反应机制 |
近日,中科院大连化学物理研究所研究员陈萍、研究员郭建平团队和丹麦技术大学教授Tejs Vegge团队合作,通过实验设计与理论计算相结合, 揭示了非过渡金属基氢化钡(BaH2)固氮及加氢产氨过程的反应机理。相关成果发表在《德国应用化学》。
氨是基础化工原料之一,是合成氮肥以及几乎所有重要含氮化学品的氮源。此外,氨亦可作为能源载体或燃料,在人类的生产、生活中发挥着至关重要的作用。传统工业合成氨过程反应条件非常苛刻,深入研究氮气的活化和转化机理,发展新型固氮及合成氨过程是研究人员不懈追求的目标。目前研究人员普遍认为,过渡金属是构成合成氨多相、均相催化剂以及固氮酶活性中心的关键组分。由于主族元素具有不同的成键及反应特性,近年来,其固氮反应化学研究也逐渐引起研究人员的关注。
本工作在该团队前期工作的基础上,以结构明确的碱土金属氢化物BaH2为研究对象,结合实验表征及理论计算结果,发现BaH2表面氢空位的存在对氮气的吸附和活化起到了关键作用。BaH2中的负氢物种一方面通过还原消除反应释放氢气,并将电子转移至钡原子,从而有助于进一步削弱氮氮键;另一方面,负氢物种可以通过还原质子化反应形成氮氢键。这与固氮酶以及某些分子氢化物配合物的固氮过程类似。
该工作阐明了碱(土)金属氢化物的固氮机制,并为进一步设计高效固氮和合成氨的非过渡金属基材料提供了新思路。
相关论文信息:https://doi.org/10.1002/anie.202205805
【资料图】
近日,中科院大连化学物理研究所研究员陈萍、研究员郭建平团队和丹麦技术大学教授Tejs Vegge团队合作,通过实验设计与理论计算相结合, 揭示了非过渡金属基氢化钡(BaH2)固氮及加氢产氨过程的反应机理。相关成果发表在《德国应用化学》。
氨是基础化工原料之一,是合成氮肥以及几乎所有重要含氮化学品的氮源。此外,氨亦可作为能源载体或燃料,在人类的生产、生活中发挥着至关重要的作用。传统工业合成氨过程反应条件非常苛刻,深入研究氮气的活化和转化机理,发展新型固氮及合成氨过程是研究人员不懈追求的目标。目前研究人员普遍认为,过渡金属是构成合成氨多相、均相催化剂以及固氮酶活性中心的关键组分。由于主族元素具有不同的成键及反应特性,近年来,其固氮反应化学研究也逐渐引起研究人员的关注。
本工作在该团队前期工作的基础上,以结构明确的碱土金属氢化物BaH2为研究对象,结合实验表征及理论计算结果,发现BaH2表面氢空位的存在对氮气的吸附和活化起到了关键作用。BaH2中的负氢物种一方面通过还原消除反应释放氢气,并将电子转移至钡原子,从而有助于进一步削弱氮氮键;另一方面,负氢物种可以通过还原质子化反应形成氮氢键。这与固氮酶以及某些分子氢化物配合物的固氮过程类似。
该工作阐明了碱(土)金属氢化物的固氮机制,并为进一步设计高效固氮和合成氨的非过渡金属基材料提供了新思路。
相关论文信息:https://doi.org/10.1002/anie.202205805
热门